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We carried out experiments on the collective crystal growth of sucrose into a form of candy known as
Kompeitoh. We examined the process for the selection of granule size and the number of spikes formed
on the crystal surface. We found that the characteristic size of spikes was proportional to the size of
granules in the steady-state regime, although the proportionality coefficient was dependent on conditions
such as the initial shape of the crystals. A selection process of surface structure during the crystallization
appears to have been caused by the distribution process of sucrose solution during the mixing of granules.
In addition, a phenomenological model of surface growth based on the obtained experimental results is
presented herein.
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1. Introduction

Kompeitoh is a common type of Japanese candy made of
sugar (sucrose) crystals that has been produced for centuries.
Kompeitoh is traditionally produced by a standard method,
which is described below. First, small seed granules, such as
sesame seeds, are placed in a large rotating pan that is heated
to an appropriate temperature and warm syrup is then added.
Highly viscous syrup is distributed over the granules through
the mixing process, and the sucrose crystallizes as the water
evaporates from the surface of the syrup. Several days are
required to obtain large sucrose crystals having a diameter of
approximately one centimeter. Remarkably, several spike-
like structures emerge autonomously during crystal growth.
A number of scientific reports (mostly in Japanese) describ-
ing the characteristic shape of kompeitoh, as shown in
Fig. 1, have been published.1–7)

The growth process of kompeitoh has a few interesting
characteristics that may differ from ordinary crystal growth
in the liquid or vapor phase. Throughout growth, viscous
sucrose solution (syrup) is supplied from outside so that the
surface of the sucrose crystal is covered by a wetting layer.
To consider the boundary conditions for the growing
interface, we therefore may need to account for the fact
that the fluid motion affects both heat and material transports
on the crystal surface.

As another feature of this system, the mixing of granules
with avalanches constantly occurs, while there also exists an
approximately closest packed region beneath the flowing
region. Therefore, we may not be able to assume the
uniformity and steadiness of the environment surrounding
the crystals, and the interactions among granules may play
an important role.

From the viewpoint of the physics of pattern formation,
some authors have suggested that the similarity between
kompeitoh growth and diffusion-limited aggregation
(DLA)8,9) originates from the symmetry-breaking mechan-
ism during crystallization.3,5) However, as described above,
simple diffusive transport and aggregation processes may
not be appropriate to describe kompeitoh growth. For
instance, in a pioneering study on kompeitoh, Fukushima2)

pointed out the existence of regular crystal shapes with
definite numbers of spikes, typically 27 or 28, which could
not be explained by a DLA-like growth model.

In dendritic crystal growth, the capillary length for the
solid-liquid interface is typically on the order of nanometers,
and resulting crystals correspondingly exhibit fine micro-
meter structures. In contrast, the characteristic spacing of
spikes observed in kompeitoh becomes much larger than this
length scale, and is typically on the order of millimeters. The
simplified boundary conditions assumed in the study of
ordinary dendritic crystals with the Gibbs–Thomson effect
may not be sufficient to explain the morphology selection
for kompeitoh. To explain the large-length-scale instability
seen in icicle growth, a theory that takes into account for the
heat transport through laminar water flow on an ice crystal
surface has recently been proposed.10–12) These studies
suggest that the hydrodynamic effects of a thin liquid layer
may change pattern selection markedly, although the growth
process seems to be very different from that of the present
subject.

In this paper, in an attempt to clarify the relevant
physical process in this seemingly complex system, we
report the experimental results for shape selection during the
growth processes of kompeitoh. In the following section, we
briefly describe the experimental procedures and important
parameters. In §3, we summarize the results of these
experiments. In §4, we present an interpretation of the
growth process of kompeitoh on the basis of our experi-
ments, followed by a phenomenological dynamical model of
the wet interface.

2. Experimental Procedure

The crystal growth is performed in a cylindrical copper
drum having a radius of 12 cm and a width of 12 cm. The
axis along which the container rotates is tilted from
approximately 0 to 5 deg from the horizontal plane to avoid
the segregation of granules into different sizes. The contain-
er is heated from the bottom using an electrical heating
device, and the temperature of the container can be changed
using a current controller attached to the heater. A liquid
sucrose solution is delivered from a reservoir into the
container through a thin tube, and drops of the solution fall
from the outlet of the tube located near the axle of rotation�E-mail: hida@phys.tohoku.ac.jp
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down to the spherical crystals. The flow rate can be
controlled within the range from 10 to 500 cm3/h.

The controllable parameters in our experiments are the
flow rate of the sucrose aqueous solution Q (cm3/h), the
weight concentration of the solution C (g/cm3), the temper-
ature at the copper side wall of the container T (�C), and the
rotation speed of the container ! (rpm). The experiments are
carried out at room temperature, 20� 3 �C.

The typical single time course of an experiment takes
about 18 hours as described in the following:
(1) Place the seed granules in the rotating container and

preheat them for approximately 30 min. In most cases,
spheres of tapioca starch of approximately 3 mm
diameter were used as the seed granules. The number
of initial granules was approximately 1,500, which
corresponds to a bulk volume of 40 cm3. In addition,
we tested various types and sizes of seed granules.
Inside the rotating container, we observe a periodic
avalanche of granules on the surface of the granular
pile that occurs at intervals of approximately 1 s (for
! ¼ 3 rpm), which become shorter as ! increases.

(2) Start supplying the sucrose solution. At the very
beginning, some of the seed granules stick together

to form clusters. To avoid continued adhesion of these
particles, we stir the particles with a rod during the first
stage of growth. Thus, the resulting sucrose crystals
contain only one seed granule.

Observations revealed that the surfaces of the
sucrose crystals were covered by a layer of sucrose
solution. Although the thickness of the layer could not
be measured with the present experimental setup, the
characteristic thickness was apparently less than sub-
millimeters from visual observation. If the surface of
the granules is dry owing to insufficient sucrose
solution supply, the spherical shape remains stable
and spike-like undulations are not observed. Since
drops of syrup are supplied from a fixed position inside
the container, only a very small number of granules
near the top layer of the pile are subject to wetting at
the same time.

To maintain constant the amount of sucrose solution
supplied to the unit surface area on the granules, we
increased the flow rate of the solution as a function of
time t (min) according to the change in the total surface
area. Otherwise, the surface conditions of the crystal
may have changed drastically during the experiment.

a

b c

Fig. 1. Samples of kompeitoh. (a) The growth times are 4, 10, and 18 h from left to right, respectively. (b) Cross section of kompeitoh. Sucrose solutions

with/without dye were added alternately for 2 h. The white area at the center is the seed particle, which consists of tapioca starch. (c) Single larger seed

particle (left) added to granules of smaller size (right). Samples are taken 4 h after the start of growth.
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The desirable condition is, therefore, QðtÞ=SðtÞ ¼
const., where SðtÞ is the total surface area of crystals.
Since the total volume VðtÞ of crystals increases as
dV=dt � QðtÞ, assuming a similar growth process V �
S3=2, QðtÞ needs to satisfy Q1=2 dQ=dt � Q. As the
solution of this equation, we used the following
quadratic form as the sucrose supply:

QðtÞ ¼ � t þ �
� �2

; ð1Þ
where � is determined such that

R 0

�� QðtÞ dt is equal to
the seed volume equivalent to the sucrose crystal
volume, assuming perfect spherical growth. The typi-
cal growth speed of the surface was approximately
1 mm/h.

(3) During crystallization, periodic avalanches of particles
occurred so that the particles collided and changed
mutual positions. Depending on the number of seed
particles and the growth rate, the total volume of the
pile of sucrose crystals may exceed the limit of the
container. In such cases, we remove some of the
crystals to prevent the container from overflowing. In
addition, we remove a small portion of the crystals for
use as samples for measurement.

3. Experimental Results

The characteristic spike-like shape of kompeitoh is seen to
be robust against the change in experimental parameters.
Within the ranges of flow rates corresponding to 0:2 < � <
2:4 cm3/h3 in eq. (1), container temperatures of 55 < T <
120 �C, and sucrose concentrations of 30 < C < 70 wt %,
we found that the initially rounded surface became unstable,
allowing the formation of spikes. As a standard condition,
we set the rotation speed of the drum to be ! ¼ 3 rpm.

If ! is small or zero, particles form clusters that consist of
several seed particles. Consequently, without sufficient
mixing due to the rotation, separated granules would not
be formed. For ! > 3, aggregation of crystal particles was
not seen except in the very early growth stage. The rotation
speed appears to affect the stability of the crystal surface as
well. For ! ¼ 3 rpm, initial spikes were observed approx-
imately one hour after the sugar solution supply was started.
When ! was doubled (6 rpm), the first instability occurred
after approximately 15 minutes. For larger !, a portion of
the granules remained spherical without spikes, and we
eventually obtained inhomogeneous granular crystals having
large deviations in size and shape. For ! > 4:5, crystals
segregated into different sizes in the container, and we found
a broad distribution in diameter.

Figure 1(a) shows the typical shape of crystals at different
growth stages. As discussed in the following, there is a
tendency for the number of spikes to be reduced as the
crystal grows. Figure 1(b) shows the cross section of a
crystal formed over two hours that was alternatively colored
with dye.

Figure 2 shows the distance between nearest spikes at the
point when tiny spikes first appear. As seed particles, we
used several types of approximately spherical objects,
including beans. Note that the diameter of the granules
plotted in the figure does not indicate the initial size of the
seeds, but rather the diameter at which the instability is first
seen. There is an apparent proportionality between the

diameter d and the selected interspike distance � , and from
fitting the data, we found that � ’ 0:20d. If we assume that
the spherical surface is divided into equitriangles having
vertices at the positions of the spikes, the number of
triangles Nt required to cover a sphere of diameter d is
estimated as Nt ’ 7:25ðd=�Þ2. When each vertex is shared
by an average of six triangles, the number of spikes Ns is
given by Ns ¼ 3Nt=6. Using this formula, our estimation of
the initial number of spikes is approximately 90, which is
much larger than that observed in the later stage of growth.

Figure 3 shows the distribution function of Ns for the
randomly sampled crystals at different times. The number of
spikes constantly decreases to a certain number, and the
distribution becomes sharper with growth. This is the
general tendency for spherical seeds other than sucrose
single-crystal of cuboidal shape. As shown in Fig. 4, the size
distribution also narrows at the same time.

Although sharpening of the distribution is clear, the
number of spikes that eventually form may change depend-
ing on the experimental conditions. In addition to 24 spikes,
we also observed the 20-spike case, as shown in the inset of
Fig. 3. Furthermore, for the case of starting from a sucrose
single crystal, which is common for commercially available
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kompeitoh candy, the selected number becomes smaller than
20.6) These numbers are significantly smaller than those
reported in ref. 2.

In Fig. 5, we plot the interspike distance during growth for
different flow rates of sucrose solution. In the plot, the data
for the very early growth stage are excluded. The flow rate Q

has only a minor effect on the shape selection process. Since
the flow rate exhibits an asymptotically linear relationship
with diameter, from the overall slope of the plots, we can
estimate that an average of 20 spikes will be selected by
comparison with the intervertex distance versus diameter
relation of dodecahedron with 20 vertices (solid line in
Fig. 5).

To measure the crystal size and irregularity, it is
convenient to introduce two crystal diameters: the first
diameter is that of a circumscribed sphere of the crystal, d1,
and the second diameter is that of the ‘‘inner’’ base
sphere upon which spikes are formed, d2. On the basis of
the measurement of commercially available samples,
Fukushima claimed that there is a steady-state growth
regime in which the ratio of the radii of the two spheres,

d2=d1, is maintained constant at approximately 0:8.2)

We also confirmed that this ratio becomes constant during
the later stage of growth. However, the measured value
of the ratio in the present experiments was approximately
0:6, which appears to be significantly smaller. This discrep-
ancy may have arisen owing to insufficient growth of
the crystals used in ref. 2 to discuss a ‘‘self-similar’’ region
in which the shape and number of spikes are selected.

4. Discussion

4.1 Growth process
In our experiments, we could not find a ‘‘magic number’’

of spikes to be finally selected. In contrast, the selected
number of spikes appears to be affected by subtle changes in
the experimental conditions. However, there is an evident
tendency in the selection process of the number of spikes, as
long as the conditions are such that near monodispersity of
the granules is maintained (Figs. 3 and 4). That is, the initial
broad distribution is focused into a single peak through
growth. Therefore, we expect that the interaction of granules
during crystal growth is crucial to spike formation and that
the number and spacing of spikes are determined collec-
tively through the growth.

In support of this theory, we observed that a similar
corrugated surface of sucrose crystals with spikes was
also deposited on the cylindrical wall of the container when
the sucrose drops happened to condense on the hot surface.
The spacing of the spikes became identical to that of
the granular crystals inside.

Furthermore, we intentionally added single particles of
larger diameter to the granules of standard size. Spikes
formed on the larger seeds in a manner such that the
spacing of the spikes was ‘‘duplicated’’ as a result of smaller
granules surrounding the larger seeds [see the photograph in
Fig. 1(c)], although the spacing of the spikes was propor-
tional to the particle diameter if the process was started from
monodispersed granules, as shown in Fig. 2.

From the above observations, the kompeitoh growth
process is described as follows:
(1) At the very early stage, instability first occurs due to

the crystallization of the sucrose solution that is
delivered onto the surface by contact processes. Since
the distance between initial spikes is proportional to the
diameter of the granules (Fig. 2), the contact process
and/or packing of granules, rather than intrinsic
instability mechanisms of crystal growth, such as the
Mullins–Sekerka instability, is influential on the
unstable wavelength.

(2) The protruding surface has a greater chance of
acquiring sucrose solution from other granules so that
the growth of such parts is accelerated. It is thought
that the instability is also promoted by a higher
evaporation rate of water at the convex superior
region. On the other hand, the tips of the spikes also
have a greater chance to provide solution to other
granules. It is very likely that the exchange of fluid
takes place simultaneously at more than one contact
point because the granules are densely packed. As
a consequence, spatial correlation of the crystal
surface is also transferred during the contact process,
which will bring about an autocatalytic effect, exhib-
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iting the focusing effect mentioned in the previous
section.

(3) During crystal growth accompanied by mixing, the
distance between spikes, as well as the diameter of
particles, is regulated. There is a tendency for the
number of the spikes to decrease gradually. After the
transient growth stage, the system enters a self-similar
growth regime, where the shape of crystals remains the
same and the number of spikes has a sharp single
distribution.

In a diffusion-limited growth process with some stabiliz-
ing effects, the stability of the moving interface is expected
to depend on the growth speed.13,14) On the other hand, on
the basis of Fig. 5, the characteristic length scale to be
selected is independent of the average growth rate of the
interface, which is proportional to the flow rate Q. We
therefore conclude that, at least, for the selection of the spike
pattern, the transport of heat and vapor is not the governing
process.

Kametani and Yamauchi reported the appearance of
crystals similar to kompeitoh during the electrodeposition
of nickel in a vibrating bed cell using a suspension
electrolysis technique.15) Despite the differences in the
material properties and growth mechanism, they obtained
very similar metal objects, typically having 28 to 30 spikes.
This may not be a coincidence if the interaction of granules
is crucial to pattern formation.

4.2 Phenomenological model of wet surface growth
Next, we consider the phenomenological model for the

surface growth in terms of the interface equation of motion
based on the above discussions. Upon contact a wet granule,
a portion of viscous liquid is delivered near the contact
point. Since the concentration of the solution is chosen to be
near saturation, crystallization can occur quickly, upon water
evaporation from the interface. From conservation of
sucrose, if the wetting layer is sufficiently thin, the under-
lying solid–liquid interface will follow the liquid–vapor
interface.

During the condensation, we can expect the fluid motion
to be driven by surface tension. Imagine that the surface of
the sucrose crystal is covered by an added wetting layer of
characteristic thickness w, the initial shape of which is given
by an adhesion and peering process of liquid during mixing.
For the case in which w is small and changes very slowly in
space, the local pressure P is determined by the Laplace law
as

P� P0 ¼ �H; ð2Þ

where H is the mean curvature of the liquid–vapor interface,
P0 is the constant atmospheric pressure, and � is the surface
tension of the interface.

On the solid–liquid interface, the nonslip boundary
condition is appropriate, whereas the liquid–vapor boundary
is stress-free. Therefore, if the change in w is sufficiently
small, by solving the Navier–Stokes equation for the high-
viscousity limit, the velocity, u, for uniform flow along the
interface becomes

u ¼
�

�
rH

z2

2
� wz

� �
; ð3Þ

where � is the viscosity. Taking the average in the z-
direction, the fluid motion along the interface is described by

�uu ¼
1

w

Z w

0

uðzÞ dz ¼ �
w2�

3�
rH: ð4Þ

For simplicity, let us consider the growth of the wet planar
surface with small amplitude undulation. From the con-
servation of fluid, the height h of the liquid-vapor interface
obeys @h=@t þ r � ðw �uuÞ ¼ 0. Using the above expression of
�uu,

@h

@t
¼ �

w3�

3�
r2H; ð5Þ

where H ’ �r2h in the leading order. This is similar to the
surface diffusion for microscopic dynamics on solids at finite
temperature.

It is plausible to assume that extruding a portion of the
surface into vapor provides a larger growth rate. One reason
for this is an excluded volume effect caused by finite-sized
sucrose crystals. When the growing interface is surround by
spherical crystals of diameter a, one can virtually draw an
effective surface extended by the thickness a. If the granules
distribute uniformly on the effective surface, the probability
of occurrence of the contact process between a perimeter site
and the crystals increases by a factor of ½ðR1 þ aÞðR2 þ aÞ�=
ðR1R2Þ ’ 1þ aðR1 þ R2Þ=ðR1R2Þ ¼ 1þ 2aH, where Rx is
the radius of curvature in the principal direction at the
perimeter, as long as a	 Rx. Thus, if crystallization is
limited owing to the supplement of solution through
collisions, the growth velocity of the curved interface
having mean curvature H is modified by the factor 2v0aH,
where v0 is the velocity of the interface. Even in the case of
a ’ Rx, this tendency remains, and the lowest relevant term
has the same form as c2H, where c2 is a constant that is
proportional to v0. In general, we can assume c2 ¼ v0� using
a characteristic length �, which depends on the origin of the
instability.

Another possible reason for the instability of the curved
front is the flux nonuniformity of the water evaporation
process on an irregular surface, which causes ‘‘Laplacian
instability’’. For small-amplitude surface fluctuations, this
can be also represented in the form c2H, although the
derivation of the explicit form of c2 may not be straightfor-
ward.

Summarizing the above arguments with the first nonlinear
correction term for an inclined surface with average growth
velocity, the height h of the growing surface in the average
growth direction will obey the following:

@h

@t
¼ �c2r2h� c4r4hþ g 1þ

1

2
ðrhÞ2

� �
þ F; ð6Þ

where c2 ¼ v0�, c4 ¼ w3�=3�, g ¼ v0, and F represent the
exchange of sucrose solution, which is dependent on space
and time. This equation is simply the Kuramoto–Sivashinsky
(KS) equation16) with an external forcing term.

In the study of the microscopic surface growth, Cuerno
et al.17) introduced a KS model with a random noise term
and found a crossover from a periodic surface structure to an
irregular surface structure. For the case of kompeitoh, F

should have correlation in space according to the shape and
packing structure of the granules that deliver the liquid. We
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need to derive a self-consistent formula that includes the
liquid exchange process in conjunction with eq. (6). This is a
topic for future study. Since the KS equation has a broad
dispersion relation for long wavelengths, collective forcing
around a wavelength may cause reinforcement and focusing,
which leads to the selection of spikes other than those at the
most unstable intrinsic mode. As a preliminary study, in the
one-dimensional case, we carried out computer simulations
of eq. (6) with a sinusoidal modulation Fðx; tÞ ¼ � sinðk0xþ
	ðtÞÞ, where 	ðtÞ is a temporally independent noise in the
phase and � is a small number. We found that k0, rather than
the intrinsic unstable mode k� ¼ ðc2=2c4Þ1=2, is finally
selected after a transient time. We expect that this softly
unstable nature of the wetting interface is intrinsically
important for shape selection through an adhesion and
peeling cycle of sucrose solution accompanied by deposi-
tion.
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